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Eigenvalues in linear algebra

1. Linear algebra with matrices

A vector a is a quantity having n coordinates (for geometrical vectors usually two or three):
a=(a,,a,,a,,..,a,). In the plane: a =(q,,a,), and in 3-dim space a =(q,,a,,a;).

For a quantity to be a vector it is also required to have certain transformation properties for
example by rotations.

The scalar product of two vectors a = (q,,4,,4d;,...,a,) and b= (b,,b,,b,,...,b,) s defined as:
(1.1) i-b=ab+ab,+..+ab,

If (e,e,,é;,...,e,)1s a base of mutually orthogonal unit vectors, spanning the vector space in
question, then the meaning of the coordinates are: a = a,e, + a,¢e, + asé;,...,a,€, .
Unit vectors means that the lengths of the base vectors are 1. | ¢, |=1, and mutually orthogonal

means ¢, -¢, =0, ;, where ;=1 for i = j and 0 otherwise.

An n x n matrix 4;; (i, j =1..n) has two indices and n” elements. It is often written in “matrix form”
with rows and columns. Below is illustrated a 3 x 3 matrix. A matrix is (in these notes) denoted
with a double underscore.

(1.2) A=|a, a,, a,;

Q31 4y Ay

The transposed matrix is marked with a hyphen. The transposed matrix is the matrix where the row
index and the column index are switched: 4°;; = 4;; .

(L.3) A=la, a, a,

Each of the rows and each of the columns, can be considered as a vector, and is also in this context
marked with an double underscore: x denotes a column vector and x ’ then denotes a row vector

having the same coordinates.

The scalar product between two vectors g and b in matrix form is then written: ¢ -b = a'

1S

Multiplication of a matrix with a column vector results in a column vector:
(14) y=4x o y=)ax
= =

That is, the i’th component is the scalar product of the i'th row of the matrix with the vector x.
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Multiplication of a matrix with a row vector results in a row vector:
(1.5) y=x4 < vy, :Zai/xi
= =i

That is, the j’th component of y' is the scalar product of the j'th column of the matrix with the

vector x’.

Multiplication of two matrices:

(1.6) C=4B < ¢;=) a,b;

== l./

That is, the i, j’th element of the product matrix is the scalar product of the i’th row of 4 and the

J’th column of B.
The transposed of a product of matrix is the transposed of the two matrices in reverse order.

(1.7) (4B)=B'4’

The unit matrix £ is a matrix with 1 in the diagonal, and otherwise 0. If ¢;, is the element in E,
then e, =5, .

The product of any matrix with the unit matrix is the matrix itself:

(1.8)

(PN
Is

=é and

Iy

é:

(S

1.1 Determinants

The concept of the determinant of matrix is well known from linear algebra, and shall not be
treated here in detail.

(An introduction to determinants is found in: www.olewitthansen.dk “Vectors in space”).
The determinant is formally written:

(1.9) det(4) or |A|

The determinant of the unit matrix is 1: det(£) =1

The determinant is nonzero, if and only if the rows and columns in the matrix are linear
independent. The matrix is then called regular.
For a 3x3 matrix the evaluation of a determinant goes as follows.

a b ¢
> o> >
(1.10) c-(axb)=la, b, c,|= ab,c,—abyc,+a,bic,—a,bc, +abc, —ab,c,

a, b, ¢
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Each term is produced by multiplying a factor from each of the three columns and from each of the
three rows. And the sign of the term is determined depending of whether the permutation (1,2,3) is
even or odd. (A permutation (i,j,k) is even if it requires a even number of permutation of neighbour
elements to restore (1,2,3), otherwise odd.

This procedure for evaluating determinants may easily be generalized to an » x n determinant.

For two matrices: 4 and B, one may show that the determinant of the product matrix 4B is the

products of the determinants 4 and B.
(1.11) det(4B) = det(4)det(B)

The general proof, however, requires an association to a volume measure concept, spanned by the
vectors in the matrices, which is beyond the scope of this article.

— (bll b12 ]
bZl b22
The product matrix is:

(1 12) AB = (all a12 j(bll blzj — (al lbll + a12b21 allblz + alzbzzj

ay 4y ayby, +ayb, ayb,+ay,b,,

However it may be shown directly using 2 x 2 matrices:

(PN
Il
TN
<
<
(3]
~
o
=
o,
IS

The determinants are:

det4 = a,,a,, —a,a, and det B =b,b,, —b, b,
and therefore

det(4)det(B) = (a,,ay, — ay,a,)(by\b,, —by\by,) = ay,a0,b,,by, — a,,a,,D, by, — ay,a,,b,\b,, +aya,,b,,b;,
Whereas:

det(éé) =(ay,by, + a,,by )y by, + ayb,,) —(ayby, +aynb, ) ayby, +a,by,)
= ay,bay b, + (a,bay,by,) +(a,by,a,b,) + a,by,a,,b,, — ayby\a,,by, —(ay,by,a,,by,) — (aynbya,,by) — aybya,,by,
= ay,\bayby, — ayb,a,b, — ayb\a,by, + aybya,,b,, = det(4)det(B)

It is then seen that four of the terms cancel e.g. a,,b,,a,,b,, —a,,b,,a,,b,, , and we are left with the
former result.

The determinant of a matrix and the determinant of its transposed matrix are the same. They will
namely have the same factors in each term just appearing in the reversed order.

If the determinant of a matrix 4 is nonzero, 4 has an inverse matrix 4_1 , defined by:
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(1.13)

(N
("N

—1:é—1é:

e

The algebraic determination of the inverse matrix is beyond the scope of this article.

It then follows from the rule of the determinant of a product, that:
(1.14) det(4™)det(4) =1

2. Linear functions and Eigenvalues.
A linear function y = f(x) in an n-dimensional space, may be written as a matrix equation:

(2.1) y=4x < yl.:Zal.jxj
Jj=1

An eigenvector u to a linear function is a vector which is mapped into a constant times itself.

(2.2) Au = Au or if we transpose this equation: u'4'= Au'

The constant A is called an eigenvalue of the linear function (the matrix equation), and we can see
from (2.2) that a matrix and its transposed matrix have the same eigenvalues.

The equation: Au = Au  can be written as: (4 — AE)u = 0, but this requires that det(4—AE)=0.
Written out, (and we settle for a 3 x 3 matrix).

a, -4 a,, a3
(2.3) ay  ap—A ay =0
as; as, a;; — A

This 3 (n) degree polynomial will according to the fundamental theorem of algebra have 3 ()
(complex) roots. So that any (» x n) matrix has » (in general complex) eigenvalues.

For two real eigenvalues 4, # 4, the corresponding eigenvectors u, and u  are orthogonal:

=Au

J =i

II=

J

IS
[FN
I

(2.4) u,Au . =Au' u. and

(2.5) Auu =duu, = (4 -Auu, =0 = o

J=1 =] =i

A matrix and its transposed matrix have the same eigenvalues. This follows from the fact that the
determinant of a matrix and its transposed matrix are the same.

Complex conjugation is denoted with an asterisk " (a + ib)* = (a - ib), where i here denotes the
complex unit i* = -1.
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However, working with complex numbers the scalar product of two vectors u, -u, must be

replaced by ul* -u, (since otherwise the length of a vector would not be a real positive number).

Also working with complex numbers, the transpose of a matrix, must be replaced by its Hermitian
conjugate 4# , which is the transposed complex conjugated matrix.

Below is a summery of most of the common operations with a matrix 4 .

Transposed: 4': a',,=a,

Complex conjugate: 4* (complex conjugation of all elements).
If A*= A4 then 4 is real.

Symmetric if: 4'= 4

Hermitian if : 4# =4
Orthogonal if: 4_1 =4 .1e. AA=E
Unitary if: 471 = 4#

Diagonal if a,, =0 for i #j
Trace of a matrix: Tr4 = Zaii

Calculation rules that apply for matrices:

(4B)'=(B'4"), (4B)=(B'4) , det(4B) = det(4)det(B)

3. Coordinate transformations
We have seen that a linear function can be represented by a matrix equation:

(3.1 y=4x < yi:zaijxj
j=1

Now we shall look into how the vectors and matrices change under a coordinate transformation.
Assume that the base vectors are: (€,é,,é;,..,€,), and that the new base is: (¢,',é,',¢;',..,€,") .
Notice:

Vectors in the new base are in the following marked with a hyphen It does not mean transposed.

Since any vector in the vector space may be expanded on the base, then the relation between the
two bases is:

(3.2) é_/': Zti_/éi 5

where T = (¢, ;) is the regular transformation matrix, and:

(3.3) ¢=

I
1~

-1
< e=¢el
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The same vector expanded on the two bases results in:

(3.4) ¥=DxE=2xe =3 x D6 = x =2
i i i i J

Or in matrix form:

(3.5) x=Tx & x=T'x

In this context, vectors which appear to the left of a matrix are always row vectors, whereas
vectors to the right are always column vectors:
(3.6)

:ﬁ and ':é'£'

<
<

If we in the first equation express x =7x" and y =T )" by the transformed coordinates, we find:
(3.7) Ty'=ATx' <  y'=T'ATX
And the matrix representation for the linear function y = 4x in the marked coordinates is thus:

(3.8) y'=A'x' where A'=T"'AT

If (e,e,,é;,..,€,) 1s an orthonormal base, and we require that the new coordinate system:

(¢',e,",¢;',..,e,") also form an orthonormal base, then the following must hold:

5:']’ = Ei"éj': (ztkiekj(ztmjemj = Z(tki )*tkj = (L*L)U
k m k

Thus T " T =E and T must be a orthogonal (unitary if complex) matrix.

4. Hermitian matrices

A Hermitian matrix H is a matrix, which is equal to its transposed, and complex conjugate matrix
H"=(H’)" . If h are the elements of H, then hij =(Ch;ji) .
For a real matrix, Hermitian is the same as symmetric.

The scalar product of two Hermitian vectors is (as mentioned above) defined as:

4.1) u 'VZZM;#V,-

We shall then prove some theorems about eigenvalues and eigenfunctions of an Hermitian matrix.
Let H be a Hermitian matrix, and let u; and u, be two eigenvectors belonging to the eigenvalues A,
and A,.

(4.2) Hu, = Au, and Hu, = Au,
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If we take the scalar product with u; in the first equation and the scalar product with u; in the
second equation, we have:

(4.3) w," Hu, = Au,"u, " Hu, = Juu,
The left sides of the equations are complex conjugates, since:

(u, Huy)' = Z(MZi*Hijul_/)*
(4.4) ’ o, .
= Z(MZi(Hij) u; ) = Z(ulj Hjiuzi)
ij ij
That is:
(4.5) (uz#Hul)* = (ul#Huz)

# # # #
Therefore from: u, Hu, = Au, u, and u, Hu, =Au, u, :

(217"2#”1)* = (ﬂzul#uz) = (21*”2”1#) = (ﬂzul#uz)
which gives:
(4.6) (4 = A)w'u, =0

Let us first assume that A, = A, and u, =u, # 0 then: u,"u, = u,"u, =|u > 0, therefore: (/L* =4).
The eigenvalues of a Hermitian matrix are real.

Next suppose that 4, # A, . It then follows from (4,6) that u,"u, = 0. As it is the case for real
matrices:

4.7) The eigenvectors belonging to different eigenvalues are orthogonal.

As a consequence the n different eigenvectors from a Hermitian matrix (when normalized) can be
used as a base, which result in a diagonal matrix.

If several linear independent eigenvectors share the same eigenvalue, the eigenvalue is said to be
degenerate.

We have proved above that the eigenvectors belonging to different eigenvalues are orthogonal,
but what about linear independently eigenvectors to a degenerate eigenvalue?

It is however well known from linear algebra that you may form a orthonormal base in a n-
dimensional vector space from n linear independent vectors. We shall settle for showing the
procedure for three vectors. The method is known as the Gram-Schmidt orthogonalization method.

Suppose that we have three linear independent vectors (i,,u,,u,) sharing the same (degenerate)

eigenvalue L. We will then proceed to form an orthogonal set. (v,,v,,V;).
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First we notice, that any linear combination of (u,,u,,u,) will also be an eigenvector with
eigenvalue A.

So we put: v, =4, and v, =u, + av, , and then determine a such that v, -v, =0
Lo L U,V

Vv, n=0 & (,+a)) =0 < az—#

1° N

We continue to put: v, =u; + fv, + v, and determine f and y so v;-v, =0 and v;-v, =0

. N - Uy -V
v,y =0 < WU+ +mw,) V=0 pg=--=-1
VY,
. - L Uy -V,
vy, =0 & (U + i +p,)v, =0 7:_ﬁ
22

Obviously this procedure can be accomplished for any number of linear independent vectors.
The eigenvalues of a matrix are independent of the coordinate system.

Suppose that we make a coordinate transformation to the (hyphen) system :

(4.8) u=Tu'" < u'zz_lg.

And suppose that A is an eigenvalue of the matrix 4 with the eigenvector u: Au = Au,
which implies:
(4.9) TATT 'u=iT"u << Au'=iu'.

Thus, if u is an eigenvector of the matrix A4, then its transformed eigenvector u'=T 712 is an
eigenvector to the matrix 4'in the transformed base and having the same eigenvalue.
If we make a transformation to a base, where the rows in the matrix 4 are the are the normalized

[ s |

eigenvectors.: (¢,',6,",¢;',..,€,") , then we have:

(4.10)

e
("N

g':ﬂ,,e.-gj:ﬂ,b‘“

i J J =i J o

If e is to be considered as one row of a transformation matrix: 7 = (2/) , then when we transform

A4, wefind: T - AT = 2,6, a diagonal matrix, having the eigenvalues in the diagonal.

For a diagonal matrix 4, having the eigenvalues in the diagonal, we have (trivially):

4.11) Tr(4)=§":/1,. and dez(é)zf[/l,.
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In the physics of harmonic oscillations of a composite system one often encounters the problem of
determining the modes or eigenvibrations of the system. This is done by finding the eigenvalues of
the left side of the equation of motion, and determining the corresponding eigenvectors.

5. Example: Eigenvalues of a composite vibrating system.

We shall look at a vibrating system that could be a water molecule or three masses connected by
springs, as shown in the figure below.

The system to the right consists of three masses m m» ms connected in a triangle with springs
having spring constants ki k» k3. The three masses have the coordinates (x1, y1), (x2, ¥2), (x3, V3).
When the system is at rest the distances between the masses are denoted:

11 21129 lz :lzsa 13 2131-

The kinetic and potential energy are then given by:

(5.1) T = i%m (x +yl

i=1

3
(5-2) U= z%k, (li _\/(xi+1 - xi)z + (y1+1 - yi)2 )2 where (X4,y4) = (xlsyl)
i=1

To try to analyze this system with this choice of coordinates will lead to six nonlinear coupled
differential equations, so we start by inventing new coordinates, which makes the potential energy
a diagonal matrix.

The new coordinates are the displacement vectors between the three masses.

If X, =(x,»),% =(x,,5,), % =(x;,);) , and we take the centre of mass as the origin of the

coordinate system, we must have:
(5.3) Mm%, +m,X, + mx, = (m, +m, +m) X, =0.
We then define three new coordinates:

— — — — — — — —

g =X =X, g, =X=X, , 43 =X =X,
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And we assign the coordinates to the g vectors: ¢, =(q,,9,), 45 =(45.9,) » 45 =(qs,9;) -
To get further we must express the x-vectors by the g-vectors. To do so we have the equations:

G =X "X, H=XH7"X, H=X7X
together with the constraint:
mX, +m,x, + myx; =0

Using the last equation to find: m,X, = —m,X, — m;x; and multiplying g, = X, — X, by m; we find:

mg, =mx, —mX, = mgq, =mxX,+m,X,+mx, ,and two similar equations:
So we have the three set of equations:

myg, = (m, + m,)X, + myX;
(5.4) m,q, = mx, +(m, +m;)X,

myq; = (my +my)X, +m,x,

These three linear equations may be solved in a normal manner, but the solutions expressed by m,
my, m3 are not so interesting (but it can be found), so we just write:

X, =bq, +b,q, + byq,
X, =¢,q, +¢,q, + ;g5
X, =d,q, +d,q, +dq,
The choice of these coordinates has the advantage that the potential energy is simply written as:
U=3k(,-q) +3k(-¢,) +3k (0 —q¢,)’

For simplicity we shall replace / - ¢ by g, since it makes no difference in the expression for the
kinetic energy as (/ - ¢)’ = q’. So doing that, the potential energy becomes

(5.5) U= %qulz + %kz%z + %k3‘132

Written with the g coordinates, the kinetic energy becomes.
(A period above a variable, as usual means differentiation with respect to time).

3 . . . . . . . . .
T= Z%mixiz =3m (b g, +byq, +b3%)2 +3m,(bq, +b,q, + bz%)z +3my(bg, +byq, + bz%)z

=1

(5.6) i
%ml (blquz + b22Q22 + bszq.32 + 2b1b2§1 ’ q;z + 2b1b3§1 'q;3 + 2b2b3§2 ’ qs) +%mz() + %mS()

T
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- _ _ - ) ) - ) . - .2 .2
G, = (-9 » G5 =(43:9) » G5 =(45:q) - S0 G =¢” +4d," . G, =4y +4,” and ¢y =4’ +4,,
and the scalar products: ¢, g4, =q,9; + 9,9, G, 4; =995 + 9,95 9> G5 = 9395 + 9496

Thus the kinetic and potential energies are bilinear forms in the coordinates ¢,and g;, i =1..6.
We then rewrite the kinetic and potential energy:

6 6
(5.7) T=>t4q, and U=>1kq’

i,j=1 i=1

When written out in matrix form:

tl 1 t12 t13 tl4 tlS t16 ql
t2 1 t22 t23 t24 t25 t26 q2
t t t t t t ]

T=( 4 @& d0 @ 4o " = = B b helds T=4T¢
Ly lyp Ly Ty Uy L | 4, = =
tSl t52 t53 t54 tSS t56 qS
té 1 t62 t63 t64 t65 t66 q.ﬁ
lk 0 0 0 0 0Yg
0 Yk 0 0 0 0 |gq
0 0 1k, 0 0 0 |gq

U=(¢ ¢ ¢ 4 4 4 2 U=qUgq

PR BTl 0 0 k00 0 |g, ===
0 0 0 0 ik 0 |g
0 0 0 0 0 1ik)g

Once we have found the eigenvalues A, of T and the corresponding eigenvectors p , we may use

the eigenvectors in a coordinate transformation to diagonalize T .

We have already seen that the matrix §, where the rows of § are the normalized eigenvector, will
diagonalize T, so that the diagonal elements are the eigenvalues: S 72 S =4(5;)

Calling the transformed coordinates g , we then have:

(5.8) 4=5§ < g=S'q

For a unitary matrix §, we have SS'= E so that §'= S

This comes about because S is symmetric and the rows in S are the orthogonal eigenvectors, so

that: p'p =0

=i =j i

In the transformed system we have:
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(5.8) T:gzgzzglzgjzzz(j

Where z is now a diagonal matrix, with the diagonal elements equal to the eigenvalues.

We have denoted the eigenvalues: (3 14,5 .5 Lo 3 Ly 5 Hs> 5 M) -

The potential energy, will transform in the same manner: ¢S us q= Q'Z q

To comply with the Lagrange formalism and for conceptual reasons, we shall keep the letter g for
the transformed coordinates, so from now on: ¢ is the same as g, whereas the previous ¢ = 5q .

With these formal changes we obtain the following expressions for the potential and kinetic
energies.

6 6
(5.9) U= zu[jQ[Qj and T = z%ﬂiqiz
i,j=1 i=1
The Lagrange equation: ia—L _o =0 then becomes:
dt 04, 0q,
6
(5.10) M4, :zuiij

J=1

We have thus reduced the 6 nonlinear differential equations to 6 linear 2. order differential
equations with constants coefficients. Such a system, may be transformed into a system of linear
equations by setting:

(5.11) g, =ae”".

We then find the equations:
6
2 it _ io;t
—Uw ae " = E u,ae !
=1

or written in matrix form

— o’ 0 0 0 0 0 ae™
0 -wow’ 0 0 0 0 | ae™
0 0 -uw’ 0 0 0 | ae™ |_
0 0 0 —wmo 0 0 | ae™
0 0 0 0 —uow’ 0 | ae™
0 0 0 0 0 —uo, \ae™
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it

Uy Uy Uz Uy Us Ug | ae

iw,t
Uy Uy Uy Uy Uy Uy | aye
iwst
Uyy Uy Usy Uy Uss Usg | aze
iyt

Uy Uy Uy Uy Uy Uy | aue

iwst

Usp Usy Usy Uy Uss Usg || ase

iwgt

Ug Ugy Ugy Ug Ugs Ugs )\ Qg€

This can be reduced into one matrix equation:

2 it
Uy — 1@, Uy Uy Uy Us U ae
2 iw,t

Uy Uy — 0, Uy Uy, Uys Upg a,e
2 iyt

Uy, Uz, Usy — [0y Usy Uss Usg ase ~0

2 iyt
Uy Uy Uy Uy — M40, Uys Uys ae
2 iwst

Us, Us, Uss Usy Uss — Hs s Usg ase
2 iwgt

Ug Ugy Ugs Ugy Uss Uge — He@Ws )\ A€

But this linear system has only a zero solution if the determinant of the matrix is zero.

Uy — :ula)lz U, U Uy Us Uy
Uy Uy — /uza)z2 Uy Uy Ups Use
Uy Uy U3 — y3a)32 Uy Uss Usg -0
Uy Uy, Uy Upy — ,u4a)42 Uys Uys
Us, Usy Us; Usy Uss — ,usa)s2 Usg
Us Usy Uss Ugy Ugs Uge — luﬁa)ﬁz

From this we may (in principle) determine the 6 eigenfrequencies (o,,®,,®,,®,,o;,®;)and (in
principle) transforming the solution back, arriving at the solution to the original problem, finding:

X, = (X, (0, 1,(2) , X, = (x,(0), »,(1)) , X3 = (x;(2), y5(1))

iot

expressed by linear combinations of: a,e'”",...,a.e"™" .

Although this delivers a theoretical solution, it is not realistic for a practical specific solution. Even
if the solution was found it would be far from transparent, and you would have to resort to a
graphical representation. But then (in the age of mathematical computers), you might as well solve
the basic coupled differential equation numerically from the start.
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6. Graphical solution to the vibrating triangle
The kinetic and potential energy are then given by:

3

T=Z%m x> +p7)
i=1
3

U= 23, = (=) + (g =) )
The Lagrange equations are, where L = T- U

where (x4,y4) = (X1,y1)

don oL
dt ox, Ox;
d oI oU
dr 0%, ox,
m, +k \/(xz+1 x) + (Vi — y;) )X, — x,) _r (. \/(x 11)2"‘()’1_)’1'—1)2 )(xi_xi—l):()
VO =) + (0 =0, VO = %) + (=2
daor_ov _,
dt ox, Ox,
mjE, + d ) )~k LS _(x,~x,)=0
VG =) + (=0, VO =%0) + (=)
daor_ov_,
dt 6.)‘}1 ayl
.. L [
m; i+ k;( : =D =)=k = =—-D(y,~y)=0
VGt =5+ (g =) VG =)+ (=)
Writing out the 6 differential equations:
l; L
mX, + k = D(x, = x,) = ky( B > -D(x —x;)=0
\/(xz x1) +(y, - y1) \/(x1_x3) +(—3)
[ l
D+ kR ( P 1 B =Dy, = ») —ks( P : > D —y3)=0
\/(xz_xl) +(,=n) \/(x1_x3) +(n = y3)
/ /
myX, + k;, ( 2 = D(x; —x,) — ki ( B 1 > —D(x, —x)=0
\/(x3_x2) +( - yz) \/(xz_x1) +(h =)
. l /
m,, + ky( B 2 > =Dy —yy) —k( B . > -D(y,—y)=0
\/(x3_x2) + (3= ),) \/(xz_x1) +(h =)
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L

\/(xl _x3)2 +( =)
[;

\/(xl _x3)2 +(—»)

12
o =)+ (s = 1)

“D - v~ ko b D)y = 7,) =0
\/(xs -x)+ (1 -p,)

myx; + ki (

> —D(x, —x;) = ky( -0 —x,)=0

ms s + ki (

2

There are six coupled second order differential equations. These equations can not be solved
analytically, but a graphical computer solution, can of course be found.

The solution is done with a DOS Turbo Pascal program from 1995 (with a home made “windows’
interface). The program was developed with Win95, where it was possible to make a screen dump.
This was no longer possible with WinXP, and after WinXP, the program cannot run at all.

To my knowledge there exists no mathematical computer program, having the same capabilities.
(Although they probably exist).

For these reasons the graphs show, are taken with a cell-phone.

The three graphs are various stages of the oscillations of the three masses. The masses chosen are
100 g, and 200 g, and the spring constants are 100 N/m and 200 N/m. The three masses are
initially situated at 10 cm from each other.

There motions are clearly chaotic, as it is mostly the case for a three body problems.
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