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 Eigenvalues in linear algebra 

1. Linear algebra with matrices 
A vector a


 is a quantity having n coordinates (for geometrical vectors usually two or three): 

),...,,,( 321 naaaaa 


. In the plane: ),( 21 aaa 


, and in 3-dim space ),,( 321 aaaa 


.  

For a quantity to be a vector it is also required to have certain transformation properties for 
example by rotations. 

The scalar product of two vectors ),...,,,( 321 naaaaa 


 and ),...,,,( 321 nbbbbb 


is defined as: 

 

(1.1)  nnbabababa  ...2211


 

 
If ),...,,,( 321 neeee


is a base of mutually orthogonal unit vectors, spanning the vector space in 

question, then the meaning of the coordinates are: nneaeaeaeaa


,...,332211  .   

Unit vectors means that the lengths of the base vectors are 1. 1|| ke


, and mutually orthogonal 

means jiji ee 


, where ji = 1 for i = j and 0 otherwise. 

  
An n x n matrix Ai j (i, j =1..n)  has two indices and n2 elements. It is often written in “matrix form” 
with rows and columns. Below is illustrated a 3 x 3 matrix. A matrix is (in these notes) denoted 
with a double underscore. 

(1.2)  


















332313

322212

312111

aaa

aaa

aaa

A   

 
The transposed matrix is marked with a hyphen. The transposed matrix is the matrix where the row 
index and the column index are switched: A’i j = Aj i . 
 

(1.3)  


















333231

232221

132111

'

aaa

aaa

aaa

A  

 
Each of the rows and each of the columns, can be considered as a vector, and is also in this context 
marked with an double underscore: x  denotes a column vector and x ’ then denotes a row vector 

having the same coordinates. 

The scalar product between two vectors a  and b in matrix form is then written: baba '


 

  
Multiplication of a matrix with a column vector results in a column vector: 
 

(1.4)   



n

j
jjii xayxAy

1

 

 
That is, the i’th component is the scalar product of the i'th row of the matrix with the vector x . 
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Multiplication of a matrix with a row vector results in a row vector: 
 

(1.5)   



n

j
ijij xayAxy

1

''  

 
That is, the j’th component of 'y  is the scalar product of the j'th column of the matrix with the 

vector x ’. 

 
Multiplication of two matrices: 

(1.6)     



n

k
jkkiji bacBAC

1

 

 
That is, the i, j’th element of the product matrix is the scalar product of the i’th row of A   and the 

j’th column of B . 

The transposed of a product of matrix is the transposed of the two matrices in reverse order. 
 
(1.7)  '')'( ABBA   

    
The unit matrix E  is a matrix with 1 in the diagonal, and otherwise 0. If ei j is the element in E , 

then jijie  .  

The product of any matrix with the unit matrix is the matrix itself: 
 
(1.8)   A E = A  and  E A = A . 

 

1.1 Determinants 
The concept of the determinant of matrix is well known from linear algebra, and shall not be 
treated here in detail.  
(An introduction to determinants is found in: www.olewitthansen.dk “Vectors in space”). 
The determinant is formally written: 
 
(1.9)   )det(A     or      || A    

 
The determinant of the unit matrix is 1:  1)det( E  

 
The determinant is nonzero, if and only if the rows and columns in the matrix are linear 
independent. The matrix is then called regular. 
For a 3x3 matrix the evaluation of a determinant goes as follows. 
 

(1.10) 123213312132231321

333

222

111

)( cbacbacbacbacbacba

cba

cba

cba

bac 

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Each term is produced by multiplying a factor from each of the three columns and from each of the 
three rows. And the sign of the term is determined depending of whether the permutation (1,2,3) is 
even or odd. (A permutation (i,j,k) is even if it requires a even number of permutation of neighbour 
elements to restore (1,2,3), otherwise odd. 
This procedure for evaluating determinants may easily be generalized to an n x n determinant. 
 
For two matrices: A  and B , one may show that the determinant of the product matrix BA  is the 

products of the determinants A  and B .   

 
(1.11)  )det()det()det( BABA   

 
The general proof, however, requires an association to a volume measure concept, spanned by the 
vectors in the matrices, which is beyond the scope of this article. 
 
However it may be shown directly using 2 x 2 matrices: 
 











2221

1211

aa

aa
A      and      










2221

1211

bb

bb
B  

The product matrix is: 
 

(1.12)  




























2222122121221121

2212121121121111

2221

1211

2221

1211

babababa

babababa

bb

bb

aa

aa
BA  

 
The determinants are: 
 

 12212211det aaaaA         and       12212211det bbbbB    

and therefore 
 

122112212211122112212211221122111221221112212211 ))(()det()det( bbaabbaabbaabbaabbbbaaaaBA   

 
Whereas: 
 

)det()det(

)()()()(

))(())(()det(

22121121221211211211212222221111

2212212212112122221211211211112122222112122121122222111112211111

22121211212211212222122121121111

BAbabababababababa

babababababababababababababababa

babababababababaBA






 
It is then seen that four of the terms cancel e.g. 1211112112211111 babababa  , and we are left with the 
former result. 
 
The determinant of a matrix and the determinant of its transposed matrix are the same. They will 
namely have the same factors in each term just appearing in the reversed order. 
 

If the determinant of a matrix A is nonzero, A  has an inverse matrix 1A  , defined by: 
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(1.13)   A 1A = 1A A = E  

 
The algebraic determination of the inverse matrix is beyond the scope of this article. 

 
It then follows from the rule of the determinant of a product, that: 
 
(1.14)  1)det()det( 1  AA  

2. Linear functions and Eigenvalues. 
A linear function )(xfy   in an n-dimensional space, may be written as a matrix equation: 
 

(2.1)  



n

j
jjii xayxAy

1

 

 
An eigenvector u to a linear function is a vector which is mapped into a constant times itself. 
   
(2.2) uuA  or if we transpose this equation:    ''' uAu   

 
The constant   is called an eigenvalue of the linear function (the matrix equation), and we can see 
from (2.2) that a matrix and its transposed matrix have the same eigenvalues. 
 
The equation: uuA  can be written as: 0)(  uEA  , but this requires that 0)det(  EA  . 

Written out, (and we settle for a 3 x 3 matrix). 
 

(2.3)  0

332313

322212

312111












aaa

aaa

aaa

 

 
This 3 (n) degree polynomial will according to the fundamental theorem of algebra have 3 (n) 
(complex) roots. So that any (n x n) matrix has n (in general complex) eigenvalues. 
 
For two real eigenvalues ji   the corresponding eigenvectors ji uandu are orthogonal: 

 
(2.4)  

jijji uuuAu  ''    and     
jiiji uuuAu  ''   

   
(2.5) 0'0')('' 

jijiijjiijij uuuuuuuu   

 
A matrix and its transposed matrix have the same eigenvalues. This follows from the fact that the 
determinant of a matrix and its transposed matrix are the same. 
 
Complex conjugation is denoted with an asterisk *. (a + ib)* = (a - ib), where i here denotes the 
complex unit i2 = -1. 
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However, working with complex numbers the scalar product of two vectors 21 uu   must be 

replaced by 2
*

1 uu   (since otherwise the length of a vector would not be a real positive number). 
 
Also working with complex numbers, the transpose of a matrix, must be replaced by its Hermitian 

conjugate #A , which is the transposed complex conjugated matrix.  

Below is a summery of most of the common operations with a matrix A  . 

 
Transposed: 'A :  ijji aa '  

Complex conjugate:  *A   (complex conjugation of all elements).  

If AA *  then A  is real. 

Symmetric if: AA '  

Hermitian if : AA #
 

Orthogonal if: '1 AA   . i.e.  EAA '  

Unitary if: #1 AA   

Diagonal if jifora ji  0  

Trace of a matrix: 
i

iiaATr  

Calculation rules that apply for matrices:  
 

)()( 111   ABBA  ,   )''()'( ABBA   , )det()det()det( BABA   

 

3. Coordinate transformations 
We have seen that a linear function can be represented by a matrix equation: 
 

(3.1)  



n

j
jjii xayxAy

1

 

 
Now we shall look into how the vectors and matrices change under a coordinate transformation.  
Assume that the base vectors are: ),..,,,( 321 neeee


, and that the new base is: )',..,',','( 321 neeee


. 

Notice: 
Vectors in the new base are in the following marked with a hyphen It does not mean transposed. 
 
Since any vector in the vector space may be expanded on the base, then the relation between the 
two bases is: 
(3.2)  i

i
jij ete
 ' ,  

where )( jitT   is the regular transformation matrix, and: 

 

(3.3)    1''  TeeTee  
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The same vector expanded on the two bases results in: 
 
(3.4)  '''' j

j
jii

i
i

i
jij

i
jj

i
ii xtxetxexexx   


 

Or in matrix form: 

(3.5)   xTxxTx 1''   

 
In this context, vectors which appear to the left of a matrix are always row vectors, whereas 
vectors to the right are always column vectors: 
 
(3.6)  xAy          and       ''' xAy   

 
If we in the first equation express 'xTx   and 'yTy   by the transformed coordinates, we find:  

 

(3.7)   '' xTAyT  '' 1 xTATy   

 
And the matrix representation for the linear function xAy   in the marked coordinates is thus:   

 

(3.8)  TATAwherexAy 1''''   

 
If ),..,,,( 321 neeee


 is an orthonormal base, and we require that the new coordinate system: 

)',..,',','( 321 neeee


 also form an orthonormal base, then the following must hold: 

 

 jijk
k

ik
m

mjm
k

kikjiji TTttetetee )()('' ** 















   

 

Thus ETT *  and T  must be a orthogonal (unitary if complex) matrix. 

 

4. Hermitian matrices 
A Hermitian matrix H is a matrix, which is equal to its transposed, and complex conjugate matrix 
H# = (H’)* . If h are the elements of H, then hi j =( hj i )

*.  
For a real matrix, Hermitian is the same as symmetric. 
 
The scalar product of two Hermitian vectors is (as mentioned above) defined as:  
 

(4.1)  
i

ii vuvu ##   

We shall then prove some theorems about eigenvalues and eigenfunctions of an Hermitian matrix. 
Let H be a Hermitian matrix, and let u1 and u2 be two eigenvectors belonging to the eigenvalues λ1 
and λ2.  
(4.2)  111 uHu    and 212 uHu   
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If we take the scalar product with u2 in the first equation and the scalar product with u1 in the 
second equation, we have: 
 

(4.3)  1
#

211
#

2 uuHuu   2
#

122
#

1 uuHuu   
 
The left sides of the equations are complex conjugates, since: 
 

(4.4)  








ji
iijj

ji
jjii

ji
jjii

uHuuHu

uHuHuu

)())((

)()(

2
*

1
*

1
*

2

*
1

*
2

*
1

#
2

 

That is: 

(4.5)  )()( 2
#

1
*

1
#

2 HuuHuu   
 

Therefore from: 1
#

211
#

2 uuHuu     and   2
#

122
#

1 uuHuu   :  
 

 )()()()( 2
#

12
#

12
*

12
#

12
*

1
#

21 uuuuuuuu       
which gives: 

(4.6)  0)( 2
#

12
*

1  uu  
 

Let us first assume that λ1 = λ2 and 021  uu  then: 0|| 2
1

#
12

#
1  uuuuu , therefore: )( 1

*
1   .  

 
The eigenvalues of a Hermitian matrix are real. 

 

Next suppose that 21   . It then follows from (4,6) that 02
#

1 uu . As it is the case for real 
matrices: 
 
(4.7)  The eigenvectors belonging to different eigenvalues are orthogonal.  
 
As a consequence the n different eigenvectors from a Hermitian matrix (when normalized) can be 
used as a base, which result in a diagonal matrix.  
 
If several linear independent eigenvectors share the same eigenvalue, the eigenvalue is said to be 
degenerate. 
We have proved above that the eigenvectors belonging to different eigenvalues are orthogonal,  
but what about linear independently eigenvectors to a degenerate eigenvalue? 
 
It is however well known from linear algebra that you may form a orthonormal base in a n-
dimensional vector space from n linear independent vectors. We shall settle for showing the 
procedure for three vectors. The method is known as the Gram-Schmidt orthogonalization method. 
 
Suppose that we have three linear independent vectors ),,( 321 uuu


sharing the same (degenerate) 

eigenvalue λ. We will then proceed to form an orthogonal set. ),,( 321 vvv


.   
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First we notice, that any linear combination of ),,( 321 uuu


 will also be an eigenvector with 

eigenvalue λ. 
 
So we put: 11 uv


  and 122 vuv

   , and then determine α such that  012  vv


 

   
11

12
11212 0)(0

vv

vu
vvuvv 







   

We continue to put: 2133 vvuv
    and determine β and γ so 00 2313  vvandvv


 

 

11

13
121313 0)(0

vv

vu
vvvuvv 







    

22

23
221323 0)(0

vv

vu
vvvuvv 







   

 
Obviously this procedure can be accomplished for any number of linear independent vectors. 
  

The eigenvalues of a matrix are independent of the coordinate system. 
 
Suppose that we make a coordinate transformation to the (hyphen) system :  
 

(4.8)  uTuuTu 1''  . 

 
And suppose that λ is an eigenvalue of the matrix A  with the eigenvector u :  uuA  ,  

which implies: 

(4.9)   '''111 uuAuTuTTAT    . 

 

Thus, if u  is an eigenvector of the matrix A , then its transformed eigenvector uTu 1'  is an 

eigenvector to the matrix 'A in the transformed base and having the same eigenvalue.  

If we make a transformation to a base, where the rows in the matrix A  are the are the normalized 

eigenvectors.: )',..,',','( 321 neeee


, then we have: 

 
(4.10)  jijjijji

eeeAe    

 
If 

i
e is to be considered as one row of a transformation matrix: )(

j
eT  , then when we transform 

A , we find: TAT 1 = jij  a diagonal matrix, having the eigenvalues in the diagonal. 

 
For a diagonal matrix A , having the eigenvalues in the diagonal, we have (trivially):  

 

(4.11)  Tr( A ) = 


n

i
i

1

     and    det 



n

i
iA

1

)(   
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In the physics of harmonic oscillations of a composite system one often encounters the problem of 
determining the modes or eigenvibrations of the system. This is done by finding the eigenvalues of 
the left side of the equation of motion, and determining the corresponding eigenvectors. 
 

5. Example: Eigenvalues of a composite vibrating system. 
We shall look at a vibrating system that could be a water molecule or three masses connected by 
springs, as shown in the figure below. 
 
  
 
  
 
 
 
 
 
 
 
 
 
The system to the right consists of three masses m1, m2, m3, connected in a triangle with springs 
having spring constants k1, k2, k3. The three masses have the coordinates (x1, y1), (x2, y2), (x3, y3).  
When the system is at rest the distances between the masses are denoted:  
 
  313232121 ,, llllll  . 

 
The kinetic and potential energy are then given by: 
 

(5.1)    )( 2
3

1

2

2
1

i
i

ii yxmT 


     

(5.2)  22
1

2
1

3

1
2
1 ))()(( iiii

i
ii yyxxlkU  


      where (x4,y4) = (x1,y1) 

 
To try to analyze this system with this choice of coordinates will lead to six nonlinear coupled 
differential equations, so we start by inventing new coordinates, which makes the potential energy 
a diagonal matrix.  
The new coordinates are the displacement vectors between the three masses.  
If ),(,),(,),( 333222111 yxxyxxyxx 


, and we take the centre of mass as the origin of the 

coordinate system, we must have: 
 

(5.3)   0)( 321332211


 CMXmmmxmxmxm . 

 
We then define three new coordinates: 
 

 133232121 ,, xxqxxqxxq


 ,  
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And we assign the coordinates to the q vectors:  ),( 211 qqq 


, ),( 433 qqq 


, ),( 653 qqq 


.  

To get further we must express the x-vectors by the q-vectors. To do so we have the equations: 
 

133232121 ,, xxqxxqxxq


        

   
together with  the constraint:  
      

0332211


 xmxmxm  

 
Using the last equation to find: 332211 xmxmxm


  and multiplying 121 xxq


  by m1 we find: 

 

112111 xmxmqm


          33222111 xmxmxmqm


  , and two similar equations: 

So we have the three set of equations: 
 

 3322111 )( xmxmmqm


  

(5.4)  3321122 )( xmmxmqm


  

2213133 )( xmxmmqm


  

 
These three linear equations may be solved in a normal manner, but the solutions expressed by m1, 
m2, m3 are not so interesting (but it can be found), so we just write: 
 
  3322111 qbqbqbx


  

  
   3322112 qcqcqcx


  

  
  3322113 qdqdqdx


  

 
The choice of these coordinates has the advantage that the potential energy is simply written as: 
 
 2

3332
12

2222
12

1112
1 )()()( qlkqlkqlkU   

 
For simplicity we shall replace l - q  by q, since it makes no difference in the expression for the 
kinetic energy as (l - q)’ = q’.  So doing that, the potential energy becomes 
 

(5.5)  2
332

12
222

12
112

1 qkqkqkU   

 
Written with the q coordinates, the kinetic energy becomes.  
(A period above a variable, as usual means differentiation with respect to time). 
 

(5.6)  

(...)(...))222(

)()()(

32
1

22
1

323231312121
2

3
2

3
2

2
2

2
2

1
2

112
1

2
33221132

12
33221122

12
33221112

1
3

1

2
2
1

mmqqbbqqbbqqbbqbqbqbmT

qbqbqbmqbqbqbmqbqbqbmxmT
i

ii











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),( 211 qqq 

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

, so: 2
2

2
1

2
1 qqq 

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
  , 

and the scalar products:   423121 qqqqqq  
  625131 qqqqqq  

  645332 qqqqqq  
  

 
Thus the kinetic and potential energies are bilinear forms in the coordinates iq and qi , i =1..6. 

We then rewrite the kinetic and potential energy: 
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ji
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      and 

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When written out in matrix form: 
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Once we have found the eigenvalues i of T  and the corresponding eigenvectors 

i
p , we may use 

the eigenvectors in a coordinate transformation to diagonalize T . 

We have already seen that the matrix S , where the rows of S  are the normalized eigenvector, will 

diagonalize T , so that the diagonal elements are the eigenvalues: )(1
ijiSTS    

Calling the transformed coordinates q , we then have: 

(5.8)  qSqqSq 1   

For a unitary matrix S , we have ESS '  so that 1'  SS .  

This comes about because S  is symmetric and the rows in S  are the orthogonal eigenvectors, so 

that: jiji
pp ' . 

In the transformed system we have: 
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(5.8)   qTqqSTSqqTqT  '' 1    

 
Where T  is now a diagonal matrix, with the diagonal elements equal to the eigenvalues. 

We have denoted the eigenvalues: ),,,,,( 62
1

52
1

42
1

32
1

22
1

12
1  . 

 

The potential energy, will transform in the same manner: qUqqSUSq '1   

 
To comply with the Lagrange formalism and for conceptual reasons, we shall keep the letter q for 
the transformed coordinates, so from now on: q  is the same as q , whereas the previous qSq  . 

With these formal changes we obtain the following expressions for the potential and kinetic 
energies. 
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
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


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The Lagrange equation: 0







ii q

L

q

L

dt

d


  then   becomes: 

 

(5.10)    



6

1j
jjiii quq  

 
We have thus reduced the 6 nonlinear differential equations to 6 linear 2. order differential 
equations with constants coefficients. Such a system, may be transformed into a system of linear 
equations by setting: 
(5.11)   ti

ii
ieaq  .  

 
We then find the equations: 
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This can be reduced into one matrix equation: 
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But this linear system has only a zero solution if the determinant of the matrix is zero. 
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From this we may (in principle) determine the 6 eigenfrequencies ),,,,,( 654321  and (in 

principle) transforming the solution back, arriving at the solution to the original problem, finding: 
 

))(),((,))(),((,))(),(( 333222111 tytxxtytxxtytxx 


  

 
expressed by linear combinations of: titi eaea 61

61 ,...,  . 

 
Although this delivers a theoretical solution, it is not realistic for a practical specific solution. Even 
if the solution was found it would be far from transparent, and you would have to resort to a 
graphical representation. But then (in the age of mathematical computers), you might as well solve 
the basic coupled differential equation numerically from the start.  
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6. Graphical solution to the vibrating triangle 
The kinetic and potential energy are then given by: 
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The Lagrange equations are, where L = T - U 
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Writing out the 6 differential equations: 
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There are six coupled second order differential equations. These equations can not be solved 
analytically, but a graphical computer solution, can of course be found.  
The solution is done with a DOS Turbo Pascal program from 1995 (with a home made “windows” 
interface). The program was developed with Win95, where it was possible to make a screen dump. 
This was no longer possible with WinXP, and after WinXP, the program cannot run at all. 
To my knowledge there exists no mathematical computer program, having the same capabilities. 
(Although they probably exist). 
For these reasons the graphs show, are taken with a cell-phone. 
The three graphs are various stages of the oscillations of the three masses. The masses chosen are 
100 g, and 200 g, and the spring constants are 100 N/m and 200 N/m. The three masses are 
initially situated at 10 cm from each other.  
There motions are clearly chaotic, as it is mostly the case for a three body problems. 
 
    
 
   


